Understanding the Impact of Mesh Tension on Vaginal Function and Structural Integrity

Katrina M. Knight,^{1,2} Sophya Breedlove,¹ Gabrielle E. King,² Pamela A. Moalli¹⁻³

¹Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; ²Magee-Womens Research Institute, Pittsburgh, PA; ³Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA

BACKGROUND

- Synthetic meshes are commonly used in surgical repair pelvic organ prolapse (POP)
- Surgeons apply tension to mesh during surgical repair POP
- Tensioning mesh causes the pores to collapse and the mesh to wrinkle (i.e., mesh deformation) (Barone et a 2015 and 2016)
- Mesh deformation leads to vaginal degeneration and mesh complications (e.g., exposure of mesh fibers three the vaginal epithelium) (Knight et al 2022)
- The independent impact of mesh tension (in the abse of deformation) on the underlying vagina is not clear
- **Objective:** to determine the impact of mesh tension of vaginal contractile function and structural properties
- Hypothesis: increased tension will lead to compromis vaginal contractile function and structural integrity

METHODS

- Nonhuman primates, Rhesus macaques, aged 8 to 15 yea old (IACUC 16088646)
- Mesh was implanted onto the vagina via sacrocolpopexy (Figure 1)
- \bigcirc No Tension (n=9)
- \bigcirc Low Tension (1 N, ~0.4 lbs, n=8)
- \bigcirc High Tension (10 N, ~2.2 lbs, n=8)
- Sham (no mesh implanted) served as controls (n=9)
- After 12 weeks, vagina (Sham) and mesh-vagina complex excised en bloc

This work was supported by the following grants: NIH R01 HD083383; NIH K12 AR084218; NIH T32 EB034216.

	METHO
irs of	symphysis
rs of	bladder bladder b
e al	vagina with mesh attached
rough	Figure 1: <i>In vivo</i> surgical images demonstrating the vagina in the absence of tension (left) and c
ence	
on	
sed	
	Figure 2: A vaginal contractility assay was performed in which the vagina (Sham) and mesh-vagina complex strips
ars	were exposed to 120 mM KCl to cause the vagina (and indirectly the smooth muscle) to contract.
/	CONCLUS
xes	 Increasing mesh tension had minimal impact on integrity of the vagina Difference between low and high tension may Inherent biological differences between prim the results
	 Increased sample size and future studies assess

are needed to further investigate study findings

mesh implanted (not deformed) onto on low or high tension (right).

Figure 3: Ball-burst testing was used to assess vaginal structural properties (stiffness, load and elongation at failure, energy absorbed), a proxy for the structural integrity of the vagina.

ION

n the contractile function and structural

y be too small to observe differences ates within a group may have impacted

ing histologic and biochemical endpoints

other structural properties (i.e., stiffness and elongation at failure) were not significantly different (p's>0.05).