Updates and Insights from the “Raising the Bar” Data Analysis

Ching-yi Shieh, Ph.D.
Katrina J. Serrano, Ph.D.

44th Meeting of the NIH Advisory Committee on Research on Women’s Health
September 13, 2017
Background

Shorter Lives, Poorer Health (2013):
U.S. Health in International Perspective

Raising the Bar Workshop (2015):
Improving the Health of Women in the U.S.
“Raising the Bar” Workshop Themes

• Need for high quality, sex-disaggregated data to understand women’s health
• Social context: demographics, SES, policy, and healthcare matter
• Interdisciplinary research needed to fill knowledge gaps
 • Biomedical and epidemiologic research methods
 • Integrated approach: Life course assessment
Women’s Health across the Life Course

External Factors
Examples include socio-demographic characteristics, SES, and health policies
- Women’s health in context

Internal Factors
Sex influences at molecular, cellular, tissue, and organ levels
- Women’s health in biological perspective
ORWH Data Assessment of U.S. Population Health: Descriptive Analysis

• **Mortality trends:**
 • Data sources: CDC “Multiple Causes of Deaths”, and U.S. Census Population Counts, 2000 to 2015
 • For all-cause and 21 selected causes of death, compute death rates per 100,000 population by sex, age, race, and ethnicity

• **Disease prevalence trends:**
 • Data source: “IPUMS Health Survey”, harmonized microdata of the CDC “National Health Interview Survey” (NHIS), 2000 to 2015
 • For 15 selected health conditions, compute disease prevalence rates by sex, age, race, and ethnicity
Cardiovascular Diseases: Death Rates and Prevalence by Sex

Heart Disease and Stroke Death Rates by Sex, 2000-2015

Heart Disease and Stroke Prevalence Rates by Sex, 2000-2015
Diabetes:
Death Rates by Sex, Race, and Ethnicity
Diabetes and Obesity: Mid-Aged African American Women

Aged 45 to 54

Aged 55 to 64

Death rates from 2000 to 2009: Declined 9.0 per 100,000

Death rates from 2000 to 2008: Declined 23.7 per 100,000
Death Rates of Alzheimer's Disease by Sex: Population Aged 65 and Above

<table>
<thead>
<tr>
<th>Year</th>
<th>Women, 65-74</th>
<th>Women, 75-84</th>
<th>Women, 85 and Above</th>
<th>Men, 65-74</th>
<th>Men, 75-84</th>
<th>Men, 85 and Above</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>727</td>
<td>522</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>898</td>
<td>898</td>
<td>898</td>
<td>898</td>
<td>898</td>
<td>898</td>
</tr>
<tr>
<td>2015</td>
<td>1,320</td>
<td>1,320</td>
<td>1,320</td>
<td>1,320</td>
<td>1,320</td>
<td>1,320</td>
</tr>
</tbody>
</table>

2000 difference: 205 deaths/100,000

2015 difference: 422 deaths/100,000
Alzheimer’s Disease: Disease Burden by Sex

Years of Potential Life Lost before Age 75

<table>
<thead>
<tr>
<th>Year</th>
<th>Women</th>
<th>Men</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: CDC “Health, United States 2016”. Table 18: Years of potential life lost before age 75 for selected causes of death, by sex, race, and Hispanic origin: United States, selected years 1980-2015. Age-adjusted statistics reflects years lost before age 75, per 100,000 population under age 75.

Years Lived with Disability

<table>
<thead>
<tr>
<th>Year</th>
<th>Women, 75-79</th>
<th>Men, 75-79</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion and Discussion

• Brief summary and implications
 • A small part of our analytical results are presented today

• Next steps: Use data-driven methods to illuminate women’s health issues.
 • Utilize a sex and gender perspective
 • Incorporate life course approach
 • Include biomedical and clinical inputs
Thank You Very Much!

Comments?