Bioenergetic and Metabolic Consequences of the Menopause Transition

SCOR on Sex Differences P50 HD073063

SCORE on Sex Differences U54 AG062319

Wendy M Kohrt, PhD Professor of Medicine, Division of Geriatric Medicine Nancy Anschutz Chair in Women's Health Research University of Colorado – Anschutz Medical Campus

Outline

- 1. Potential consequences of the loss of gonadal function – working model
- 2. Bioenergetic and metabolic consequences of the loss of ovarian function preclinical
- 3. Bioenergetic and metabolic consequences of the loss of ovarian function clinical
- 4. New SCORE directions

Outline

1. Potential consequences of the loss of gonadal function – working model

2. Bioenergetic and metabolic consequences of the loss of ovarian function – preclinical

Body Weight in Mice and Rats OVX vs Sham

Adapted from: Witte MM et al. General Compar Endocrinol 166:520, 2010

Locomotor Activity in Mice and Rats OVX vs Sham

Adapted from: Witte MM et al. General Compar Endocrinol 166:520, 2010

Wheel-running Distance in Sham and OVX Mice

From: Gorzek JF et al. Med Sci Sports Exerc 39:248, 2007

Effects of OVX and E₂ Add-back in Mice

From: Camporez JP et al. *Endocrinol* 154:1021, 2013

Effects of Programmed Exercise on Adiposity and Insulin Action

Adapted from: Pighon A et al. Climacteric 13:238, 2010

Effects of OVX:

- decreased physical activity
- decreased resting metabolic rate
- increased energy intake (some species)
- increased abdominal fat gain
- metabolic dysfunction

Prevented by E₂ treatment and by exercise

Outline

- 1. Potential consequences of the loss of gonadal function – working model
- 2. Bioenergetic and metabolic consequences of the loss of ovarian function preclinical
- 3. Bioenergetic and metabolic consequences of the loss of ovarian function clinical

Ovarian Hormone Suppression (GnRH_{AG}; 5 months) With Placebo or E₂

2-group model	GnRH _{AG} +PL n=35	GnRH _{AG} +E ₂ n=35
Age, y	36 ± 2	35 ± 2
Wt, kg	74 ± 3	76 ± 3
BMI, kg/m ²	28 ± 2	28 ± 1
FM, kg	28 ± 2	28 ± 3
FFM, kg	46 ± 1	48 ± 1

Ovarian Hormone Suppression (GnRH_{AG}; 5 months) + Placebo or E_2 , \pm Resistance Exercise

4-group model	GnRH _{AG} +PL n=35		GnRH _{AG} +E ₂ n=35	
	-Ex n=23	+Ex n=12	-Ex n=23	+Ex n=12
Age, y	36 ± 2	36 ±2	34 ± 2	36 ±2
Wt, kg	74 ± 4	75 ± 4	76 ± 4	78 ± 5
BMI, kg/m ²	28 ± 1	28 ± 2	28 ± 1	29 ± 2
FM, kg	27 ± 3	28 ± 3	28 ± 3	28 ± 3
FFM, kg	47 ± 1	47 ± 2	48 ± 1	50 ± 2

GnRH_{AG}+PL vs GnRH_{AG}+E₂ 5-mo Changes in FFM and Muscle CSA

$GnRH_{AG}$, +/- E_2 , +/- Exercise Training 5-mo Changes in FFM and Muscle CSA

GnRH_{AG}+PL vs GnRH_{AG}+E₂ 5-mo Changes in Fat Mass and Abd Fat Areas

Shea K et al. *Menopause* 22:1045, 2015

GnRH_{AG}+PL vs GnRH_{AG}+E₂ 5-mo Changes in Fat Mass and Abd Fat Areas

GnRH_{AG}+PL vs GnRH_{AG}+E₂ Changes in Moderate-Vigorous Physical Activity

Melanson EL et al, Med Sci Sports Exerc 50:1704, 2018

GnRH_{AG}+PL vs GnRH_{AG}+E₂ vs GnRH_{AG}+PL+Ex 5-mo Changes in Energy Expenditure

Melanson EL et al. J Appl Physiol 119:975, 2015

Ovarian Suppression – Body Composition

Figure 4. Changes in fat mass and fat-free mass in response to 12 to 24 weeks of gonadotropin releasing hormone therapy.

6 Months of Placebo vs GnRH Agonist Therapy <u>+</u> Endurance Exercise

6-month intervention	Placebo	GnRH _{AG} + Exercise	GnRH _{AG}
n	8	14	11
Age, y	46 ± 2	45 ± 3	47 ± 3
Wt, kg	72 ± 13	70 ± 13	74 ± 12
FM, kg	26 ± 12	23 ± 7	27 ± 7
FFM, kg	46 ± 5	47 ± 5	47 土 5

Gavin KM et al preliminary data

Ovarian Suppression and Endurance Exercise Change in Fat-free Mass

Ovarian Suppression and Endurance Exercise Change in Fat Mass

Ovarian Suppression and Endurance Exercise Change in Trunk Fat Mass

E₂ Regulation of Adipose Cellular Composition

E₂ Regulation of BAT Thermogenesis

¹⁸FDG Tissue Uptake Pre- vs Postmenopausal Women

Melanson et al preliminary data

Cold-induced Thermogenesis in Pre- vs Postmenopausal Women

Melanson et al preliminary data

Estrogen Status and Energy Homeostasis

- Preclinical (OVX) and clinical studies (GnRH_{AG}) provide consistent evidence for the role of estrogens in the regulation of energy balance
- The loss of estrogens (OVX, GnRH_{AG}) may promote fat gain through multiple system-level mechanisms
 - decreased resting metabolic rate
 - decreased physical activity
 - increased energy intake (some species)
 - decreased BAT thermogenesis

Estrogen Status and Energy Homeostasis - Mitigation by Exercise -

- In animals, exercise prevents the effects of OVX to increase abdominal adiposity and metabolic dysfunction
- Preliminary studies of women suggest resistance exercise may attenuate the loss of lean mass in response to ovarian aging, but not the increase in abdominal adiposity or decrease in resting metabolic rate. Endurance exercise may attenuate fat gain, but not central body fat.

Outline

- 1. Potential consequences of the loss of gonadal function – working model
- 2. Bioenergetic and metabolic consequences of the loss of ovarian function preclinical
- 3. Bioenergetic and metabolic consequences of the loss of ovarian function SCOR results
- 4. New SCORE directions

Colorado SCORE - Scientific Focus

Blocking FSH induces thermogenic adipose tissue and reduces body fat

Peng Liu¹*, Yaoting Ji^{1,2}*, Tony Yuen¹, Elizabeth Rendina–Ruedy³, Victoria E. DeMambro³, Samarth Dhawan¹, Wahid Abu–Amer¹, Sudeh Izadmehr¹, Bin Zhou⁴, Andrew C. Shin¹, Rauf Latif¹, Priyanthan Thangeswaran¹, Animesh Gupta¹, Jianhua Li¹, Valeria Shnayder¹, Samuel T. Robinson⁴, Yue Eric Yu⁴, Xingjian Zhang⁴, Feiran Yang⁴, Ping Lu¹, Yu Zhou¹, Ling–Ling Zhu¹, Douglas J. Oberlin¹, Terry F. Davies¹, Michaela R. Reagan³, Aaron Brown³, T. Rajendra Kumar⁵, Solomon Epstein¹, Jameel Iqbal⁶, Narayan G. Avadhani⁷, Maria I. New¹, Henrik Molina⁸, Jan B. van Klinken⁹, Edward X. Guo⁴, Christoph Buettner¹, Shozeb Haider¹⁰, Zhuan Bian², Li Sun¹§, Clifford J. Rosen³§ & Mone Zaidi¹§

1 JUNE 2017 | VOL 546 | NATURE | 107

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

CLINICAL IMPLICATIONS OF BASIC RESEARCH

Elizabeth G. Phimister, Ph.D., Editor

Preventing Fat Gain by Blocking Follicle-Stimulating Hormone

Wendy M. Kohrt, Ph.D., and Margaret E. Wierman, M.D.

N ENGLJ MED 377;3 NEJM.ORG JULY 20, 2017

W Kohrt, PhD **R** Schwartz, MD S Creasy, PhD K Gavin, PhD K Hildreth, MD K Jankowski, PhD D Klemm, PhD P MacLean, PhD E Melanson, PhD K Moreau, PhD Y-M Park, PhD C Rynders, PhD C Swanson, MD S Wherry, PhD

P50 HD073063 U54 AG062319 U01 TR001082 P30 DK048520

UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS

